مقدمة إلى أريما: النماذج غير التقليدية أريما (p، d، q) التنبؤ بالمعادلة: نماذج أريما هي، من الناحية النظرية، الفئة الأكثر عمومية من النماذج للتنبؤ بسلسلة زمنية يمكن أن تكون 8220stationary8221 عن طريق الاختلاف (إذا لزم الأمر)، ربما جنبا إلى جنب مع التحولات غير الخطية مثل قطع الأشجار أو تفريغ (إذا لزم الأمر). المتغير العشوائي الذي هو عبارة عن سلسلة زمنية ثابت إذا كانت خصائصه الإحصائية ثابتة على مر الزمن. سلسلة ثابتة لا يوجد لديه اتجاه، والاختلافات حول المتوسط لها اتساع مستمر، وأنه يتلوى بطريقة متسقة. أي أن أنماطها الزمنية العشوائية القصيرة الأجل تبدو دائما بنفس المعنى الإحصائي. ويعني الشرط الأخير أن علاقاته الذاتية (الارتباطات مع انحرافاته السابقة عن المتوسط) تظل ثابتة على مر الزمن، أو على نحو مكافئ، أن طيف القدرة لا يزال ثابتا على مر الزمن. ويمكن أن ينظر إلى متغير عشوائي لهذا النموذج (كالمعتاد) على أنه مزيج من الإشارة والضوضاء، والإشارة (إذا كانت ظاهرة) يمكن أن تكون نمطا للانعكاس السريع أو البطيء، أو التذبذب الجيبية أو بالتناوب السريع في الإشارة ، ويمكن أن يكون لها أيضا عنصر موسمي. ويمكن النظر إلى نموذج أريما على أنه 8220filter8221 يحاول فصل الإشارة عن الضوضاء، ومن ثم يتم استقراء الإشارة إلى المستقبل للحصول على التنبؤات. ومعادلة التنبؤ أريما لسلسلة زمنية ثابتة هي معادلة خطية (أي الانحدار من نوع) تكون فيها المتنبؤات متخلفة عن المتغير التابع والتخلفات المتراكمة في أخطاء التنبؤ. وهذا هو: القيمة المتوقعة ل Y قيمة ثابتة ومرجحة لقيمة واحدة أو أكثر من القيم الأخيرة Y ومجموع مرجح لقيمة أو أكثر من القيم الأخيرة للأخطاء. إذا كانت المتنبئات تتكون فقط من قيم متخلفة من Y. هو نموذج الانحدار الذاتي النقي (8220self-regressed8221) النموذج، وهو مجرد حالة خاصة من نموذج الانحدار والتي يمكن تركيبها مع برامج الانحدار القياسية. على سبيل المثال، نموذج الانحدار الذاتي الأول (8220AR (1) 8221) ل Y هو نموذج انحدار بسيط يتغير فيه المتغير المستقل فقط بفترة واحدة (لاغ (Y، 1) في ستاتغرافيكس أو YLAG1 في ريجرسيت). إذا كان بعض المتنبؤات متخلفة من الأخطاء، وهو نموذج أريما فإنه ليس نموذج الانحدار الخطي، لأنه لا توجد طريقة لتحديد 8220 فترة قصيرة 8217s error8221 كمتغير مستقل: يجب أن تحسب الأخطاء على أساس فترة إلى فترة عندما يتم تركيب النموذج على البيانات. ومن وجهة النظر التقنية، فإن مشكلة استخدام الأخطاء المتأخرة كمنبئات هي أن التنبؤات النموذجية 8217s ليست دالات خطية للمعاملات. رغم أنها وظائف خطية للبيانات السابقة. لذلك، يجب تقدير المعاملات في نماذج أريما التي تتضمن أخطاء متخلفة بطرق التحسين غير الخطية (8220hill-التسلق 8221) بدلا من مجرد حل نظام المعادلات. اختصار أريما لتقف على السيارات والانحدار المتكامل المتحرك المتوسط. ويطلق على الفترات المتأخرة في السلسلة المعيارية في معادلة التنبؤ مصطلحات كوتورغريسغريسيفيكوت، ويطلق على "أخطاء أخطاء التنبؤ" مصطلحات متوسط التكلفة، ويقال إن السلسلة الزمنية التي يجب أن تكون مختلفة لتكون ثابتة، هي عبارة عن نسخة متقاربة من سلسلة ثابتة. نماذج المشي العشوائي ونماذج الاتجاه العشوائي، ونماذج الانحدار الذاتي، ونماذج التجانس الأسي كلها حالات خاصة لنماذج أريما. ويصنف نموذج أريما نوناسونال على أنه نموذج كوتاريما (p، d، q) كوت حيث: p هو عدد مصطلحات الانحدار الذاتي، d هو عدد الاختلافات غير الموسمية اللازمة للاستبانة، و q هو عدد الأخطاء المتوقعة في التنبؤات معادلة التنبؤ. يتم بناء معادلة التنبؤ على النحو التالي. أولا، اسمحوا y تدل على الفرق د من Y. مما يعني: لاحظ أن الفرق الثاني من Y (حالة d2) ليس الفرق من 2 منذ فترات. بدلا من ذلك، هو الفرق الأول من الأول الفرق. وهو التناظرية منفصلة من مشتق الثاني، أي تسارع المحلي للسلسلة بدلا من الاتجاه المحلي. من حيث y. معادلة التنبؤ العامة هي: هنا يتم تعريف المعلمات المتوسطة المتحركة (9528217s) بحيث تكون علاماتها سلبية في المعادلة، وفقا للاتفاقية التي قدمها بوكس وجينكينز. بعض الكتاب والبرمجيات (بما في ذلك لغة البرمجة R) تعريفها بحيث لديهم علامات زائد بدلا من ذلك. عندما يتم توصيل الأرقام الفعلية في المعادلة، لا يوجد أي غموض، ولكن من المهم أن نعرف 8217s الاتفاقية التي يستخدمها البرنامج الخاص بك عندما كنت تقرأ الإخراج. في كثير من الأحيان يتم الإشارة إلى المعلمات هناك من قبل أر (1)، أر (2)، 8230، و ما (1)، ما (2)، 8230 الخ لتحديد نموذج أريما المناسب ل Y. تبدأ من خلال تحديد ترتيب الاختلاف (د) الحاجة إلى توثيق السلسلة وإزالة الخصائص الإجمالية للموسمية، ربما بالاقتران مع تحول استقرار التباين مثل قطع الأشجار أو الانقسام. إذا كنت تتوقف عند هذه النقطة والتنبؤ بأن سلسلة ديفيرنتد ثابت، لديك مجرد تركيب المشي العشوائي أو نموذج الاتجاه العشوائي. ومع ذلك، قد لا تزال السلسلة المستقرة ذات أخطاء ذات علاقة ذاتية، مما يشير إلى أن هناك حاجة إلى بعض المصطلحات أر (p 8805 1) أندور بعض مصطلحات ما (q 8805 1) في معادلة التنبؤ. ستتم مناقشة عملية تحديد قيم p و d و q الأفضل لسلسلة زمنية معينة في الأقسام اللاحقة من الملاحظات (التي توجد روابطها في أعلى هذه الصفحة)، ولكن معاينة لبعض الأنواع من نماذج أريما نونسونالونال التي تواجه عادة ما يرد أدناه. أريما (1،0،0) من الدرجة الأولى نموذج الانحدار الذاتي: إذا كانت السلسلة ثابتة و أوتوكوريلاتد، وربما يمكن التنبؤ بها باعتبارها متعددة من قيمتها السابقة، بالإضافة إلى ثابت. معادلة التنبؤ في هذه الحالة هي 8230 الذي يتراجع Y على نفسه متأخرا بفترة واحدة. هذا هو 8220ARIMA (1،0،0) ثابت 8221 نموذج. إذا كان متوسط Y هو الصفر، فإن المصطلح الثابت لن يتم تضمينه. إذا كان معامل الانحدار 981 1 موجبا وأقل من 1 في الحجم (يجب أن يكون أقل من 1 من حيث الحجم إذا كان Y ثابتا)، يصف النموذج سلوك التراجع المتوسط الذي ينبغي التنبؤ فيه بقيمة 8217s للفترة التالية لتكون 981 1 مرة بعيدا عن متوسط هذه الفترة قيمة 8217s. وإذا كان 981 1 سلبيا، فإنه يتنبأ بسلوك التراجع عن طريق تبديل الإشارات، أي أنه يتوقع أيضا أن يكون Y أقل من متوسط الفترة التالية إذا كان أعلى من متوسط هذه الفترة. في نموذج الانحدار الذاتي من الدرجة الثانية (أريما (2،0،0))، سيكون هناك مصطلح T-2 على اليمين كذلك، وهكذا. واعتمادا على علامات ومقدار المعاملات، يمكن أن يصف نموذج أريما (2،0،0) نظاما له انعكاس متوسط يحدث بطريقة تتأرجح جيبيا، مثل حركة الكتلة في فصل الربيع الذي يتعرض للصدمات العشوائية . أريما (0،1،0) المشي العشوائي: إذا كانت السلسلة Y ليست ثابتة، أبسط نموذج ممكن لذلك هو نموذج المشي العشوائي، والتي يمكن اعتبارها حالة الحد من نموذج أر (1) التي الانتكاس الذاتي معامل يساوي 1، أي سلسلة مع بلا حدود بطيئة متوسط الانعكاس. ويمكن كتابة معادلة التنبؤ لهذا النموذج على النحو التالي: حيث يكون المصطلح الثابت هو متوسط التغير من فترة إلى أخرى (أي الانجراف الطويل الأجل) في Y. ويمكن تركيب هذا النموذج كنموذج انحدار لا اعتراض يقوم فيه الفرق الأول من Y هو المتغير التابع. وبما أنه يشمل (فقط) اختلافا غير منطقي ومدة ثابتة، فإنه يصنف على أنه نموذج كوتاريما (0،1،0) مع ثابت. كوت نموذج المشي العشوائي بدون الانجراف سيكون أريما (0،1، 0) نموذج بدون نموذج أريسترجيسد من الدرجة الأولى (1-1،0): إذا كانت أخطاء نموذج المشي العشوائي مترابطة تلقائيا، ربما يمكن إصلاح المشكلة بإضافة فاصل واحد للمتغير التابع إلى معادلة التنبؤ - أي وذلك بتراجع الفارق الأول من Y على نفسه متأخرا بفترة واحدة. وهذا من شأنه أن يسفر عن معادلة التنبؤ التالية: التي يمكن إعادة ترتيبها إلى هذا هو نموذج الانحدار الذاتي من الدرجة الأولى مع ترتيب واحد من اختلاف غير منطقي ومدة ثابتة - أي. وهو نموذج أريما (1،1،0). أريما (0،1،1) دون تمهيد الأسي المستمر المستمر: اقترح استراتيجية أخرى لتصحيح الأخطاء أوتوكوريلاتد في نموذج المشي العشوائي من قبل نموذج تمهيد الأسي بسيط. تذكر أنه بالنسبة لبعض السلاسل الزمنية غير المستقرة (مثل تلك التي تظهر تقلبات صاخبة حول متوسط متباينة ببطء)، فإن نموذج المشي العشوائي لا يؤدي فضلا عن المتوسط المتحرك للقيم السابقة. وبعبارة أخرى، فبدلا من أخذ الملاحظة الأخيرة كتوقعات الملاحظة التالية، من الأفضل استخدام متوسط الملاحظات القليلة الأخيرة من أجل تصفية الضوضاء وتقدير المتوسط المحلي بدقة أكبر. يستخدم نموذج التمهيد الأسي البسيط المتوسط المتحرك المرجح أضعافا مضاعفة للقيم السابقة لتحقيق هذا التأثير. يمكن كتابة معادلة التنبؤ لنموذج التمهيد الأسي البسيط في عدد من الأشكال المكافئة رياضيا. واحد منها هو ما يسمى 8220 خطأ التصحيح 8221 النموذج، الذي يتم تعديل التوقعات السابقة في اتجاه الخطأ الذي قدمه: لأن ه ر - 1 ذ ر - 1 - 374 ر - 1 حسب التعريف، يمكن إعادة كتابة هذا كما في : وهو أريما (0،1،1) مع معادلة التنبؤ المستمر مع 952 1 1 - 945. وهذا يعني أنه يمكنك تناسب تمهيد الأسي بسيط من خلال تحديده كنموذج أريما (0،1،1) دون ثابت، ويقدر معامل ما (1) المقدر 1-ناقص ألفا في صيغة سيس. نذكر أن متوسط عمر البيانات في التنبؤات قبل فترة واحدة هو 945 1 في نموذج سيس، وهذا يعني أنها سوف تميل إلى التخلف عن الاتجاهات أو نقاط التحول بنحو 1 945 فترات. ويترتب على ذلك أن متوسط عمر البيانات في التنبؤات السابقة بفترة زمنية واحدة لنموذج أريما (0،1،1) بدون نموذج ثابت هو 1 (1 - 952 1). إذا، على سبيل المثال، إذا كان 952 1 0.8، متوسط العمر هو 5. كما 952 1 النهج 1، يصبح النموذج أريما (0،1،1) بدون ثابت متوسط متحرك طويل الأجل جدا، و 952 1 النهج 0 يصبح نموذج المشي العشوائي دون الانجراف. ما هو أفضل طريقة لتصحيح الارتباط الذاتي: إضافة المصطلحات أر أو إضافة مصطلحات ما في النموذجين السابقين نوقش أعلاه، تم إصلاح مشكلة أخطاء أوتوكوريلاتد في نموذج المشي العشوائي بطريقتين مختلفتين: عن طريق إضافة قيمة متخلفة من سلسلة مختلفة إلى المعادلة أو إضافة قيمة متأخرة لخطأ التنبؤ. النهج الذي هو أفضل قاعدة من الإبهام لهذا الوضع، والتي سيتم مناقشتها بمزيد من التفصيل في وقت لاحق، هو أن الارتباط الذاتي الإيجابي عادة ما يعامل بشكل أفضل عن طريق إضافة مصطلح أر إلى النموذج وعادة ما يعامل الارتباط الذاتي السلبي عن طريق إضافة ما المدى. في سلسلة الأعمال والاقتصاد الزمني، وغالبا ما تنشأ الارتباط الذاتي السلبي باعتباره قطعة أثرية من الاختلاف. (بشكل عام، يقلل الاختلاف من الارتباط الذاتي الإيجابي وربما يتسبب في التحول من الارتباط الذاتي الموجب إلى السالب). لذلك، فإن نموذج أريما (0،1،1)، الذي يكون فيه الاختلاف مصحوبا بمصطلح ما، غالبا ما يستخدم من أريما (1،1،0) نموذج. أريما (0،1،1) مع تمهيد الأسي المستمر المستمر مع النمو: من خلال تنفيذ نموذج سيس كنموذج أريما، كنت في الواقع كسب بعض المرونة. أولا وقبل كل شيء، ويسمح معامل ما (1) المقدرة لتكون سلبية. وهذا يقابل عامل تمهيد أكبر من 1 في نموذج سيس، وهو ما لا يسمح به عادة إجراء تركيب نموذج سيس. ثانيا، لديك خيار إدراج مدة ثابتة في نموذج أريما إذا كنت ترغب في ذلك، من أجل تقدير متوسط الاتجاه غير الصفر. ويشتمل نموذج أريما (0،1،1) الثابت على معادلة التنبؤ: إن التنبؤات ذات الفترة الواحدة من هذا النموذج متشابهة نوعيا مع نموذج نموذج سيس، إلا أن مسار التنبؤات الطويلة الأجل عادة ما يكون (المنحدر يساوي مو) بدلا من خط أفقي. أريما (0،2،1) أو (0،2،2) دون تمهيد أسي خطية ثابتة: نماذج التجانس الأسية الخطية هي نماذج أريما التي تستخدم اثنين من الاختلافات نونسوناسونال بالتزامن مع الشروط ما. والفرق الثاني لسلسلة Y ليس مجرد الفرق بين Y وتخلف نفسها بفترتين، وإنما هو الفرق الأول من الاختلاف الأول - أي. التغيير في تغيير Y في الفترة t. وبالتالي، فإن الفارق الثاني من Y في الفترة t يساوي (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. والفرق الثاني من الدالة المنفصلة يشبه مشتق ثان من دالة مستمرة: يقيس الدالة كوتاكسيليركوت أو كوتكورفاتوريكوت في الدالة عند نقطة معينة من الزمن. ويتنبأ نموذج أريما (0،2،2) دون توقع ثابت بأن الفارق الثاني من السلسلة يساوي دالة خطية لآخر خطأين متوقعين: يمكن إعادة ترتيبهما على النحو التالي: حيث يكون 952 1 و 952 2 هما (1) و ما (2) معاملات. هذا هو نموذج التجانس الأسي العام الخطية. أساسا نفس نموذج Holt8217s، و Brown8217s نموذج هو حالة خاصة. ويستخدم المتوسطات المتحركة المرجح أضعافا مضاعفة لتقدير كل من المستوى المحلي والاتجاه المحلي في هذه السلسلة. تتلاقى التوقعات على المدى الطويل من هذا النموذج مع خط مستقيم يعتمد ميله على متوسط الاتجاه الملحوظ نحو نهاية السلسلة. أريما (1،1،2) دون ثابت خطي الاتجاه الاتجاه الأسي تمهيد. ويوضح هذا النموذج في الشرائح المصاحبة على نماذج أريما. فإنه يستقلب الاتجاه المحلي في نهاية السلسلة ولكن تسطح بها في آفاق التنبؤ أطول لإدخال مذكرة من المحافظة، وهي الممارسة التي لديها الدعم التجريبي. انظر المقال على كوهي في ذي تريند تريند وركسكوت غاردنر أند ماكنزي أند ذي كوغولدن رولكوت أرتيسترونغ إت آل. للتفاصيل. فمن المستحسن عموما التمسك النماذج التي لا يقل عن واحد من p و q لا يزيد عن 1، أي لا تحاول أن تناسب نموذج مثل أريما (2،1،2)، وهذا من المرجح أن يؤدي إلى الإفراط في تجهيز وكومكومون-فاكتوركوت القضايا التي نوقشت بمزيد من التفصيل في الملاحظات على الهيكل الرياضي لنماذج أريما. تنفيذ جدول البيانات: من السهل تنفيذ نماذج أريما مثل تلك الموضحة أعلاه على جدول بيانات. ومعادلة التنبؤ هي مجرد معادلة خطية تشير إلى القيم السابقة للسلاسل الزمنية الأصلية والقيم السابقة للأخطاء. وهكذا، يمكنك إعداد جدول بيانات تنبؤ أريما عن طريق تخزين البيانات في العمود ألف، وصيغة التنبؤ في العمود باء، والأخطاء (البيانات ناقص التنبؤات) في العمود C. وستكون صيغة التنبؤ في خلية نموذجية في العمود باء ببساطة تعبير خطي يشير إلى القيم في الصفوف السابقة من العمودين A و C مضروبا في معاملات أر أو ما المناسبة المخزنة في خلايا أخرى في جدول البيانات. في الممارسة المتوسط المتحرك سيوفر تقدير جيد لمتوسط التسلسل الزمني إذا كان يعني ثابت أو ببطء تغيير. وفي حالة المتوسط الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط الضوضاء العشوائية من التوزيع العادي مع متوسط الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط المتوسط المتحرك للمتوسط في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط المتحرك يقلل من الملاحظات نظرا لأن المتوسط يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط المتحرك. التحيز عندما يكون المتوسط يزداد سلبيا. أما بالنسبة للمتوسط المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط المتوسط المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط التقدير المتحرك إلى افتراض متوسط ثابت، والمثال له اتجاه خطي في المتوسط خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط المتحرك البالغ 5 من المتوسط المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط الانحراف المتوسط في الخلايين E6 و E7 على التوالي. 1.2 النماذج المتوسطة المتحركة (نماذج ما) يمكن أن تشمل نماذج السلاسل الزمنية المعروفة باسم نماذج أريما مصطلحات الانحدار الذاتي ومتوسطات الحركة المتحركة. في الأسبوع الأول، تعلمنا مصطلح الانحدار الذاتي في نموذج سلسلة زمنية للمتغير x t قيمة متخلفة من x t. على سبيل المثال، مصطلح الانحدار الذاتي 1 تأخر هو x t-1 (مضروبا في معامل). يحدد هذا الدرس مصطلحات المتوسط المتحرك. متوسط المتوسط المتحرك في نموذج السلاسل الزمنية هو خطأ سابق (مضروبا في معامل). واسمحوا (W أوفيرزيت N (0، sigma2w))، بمعنى أن w t هي متطابقة، موزعة بشكل مستقل، ولكل منها توزيع طبيعي يعني 0 و نفس التباين. (1) هو (شت مو وت theta1w) نموذج المتوسط المتحرك الثاني، الذي يشير إليه ما (2) هو (شت مو wtta1w theta2w) ، التي يرمز إليها ما (q) هو (شت مو وت theta1w ثيتاو w النقاط ثيتاكو) ملاحظة. العديد من الكتب المدرسية والبرامج البرمجية تحدد النموذج مع علامات سلبية قبل الشروط. هذا لا يغير الخصائص النظرية العامة للنموذج، على الرغم من أنه لا يقلب علامات جبري لقيم معامل المقدرة و (غير مسقوفة) المصطلحات في صيغ ل أكفس والتباينات. تحتاج إلى التحقق من البرنامج للتحقق مما إذا كانت العلامات السلبية أو الإيجابية قد استخدمت من أجل كتابة النموذج المقدر بشكل صحيح. يستخدم R إشارات إيجابية في نموذجه الأساسي، كما نفعل هنا. الخصائص النظرية لسلسلة زمنية مع ما (1) نموذج لاحظ أن القيمة غير صفرية الوحيدة في أسف النظري هو تأخر 1. جميع أوتوكوريلاتيونس الأخرى هي 0. وبالتالي عينة أسف مع ارتباط ذاتي كبير فقط في تأخر 1 هو مؤشر لنموذج ما (1) ممكن. للطلاب المهتمين، والبراهين من هذه الخصائص هي ملحق لهذه النشرة. مثال 1 افترض أن نموذج ما (1) هو x t 10 w t .7 w t-1. حيث (الوزن الزائد N (0،1)). وبالتالي فإن معامل 1 0.7. وتعطى أسف النظرية من قبل مؤامرة من هذا أسف يتبع. المؤامرة فقط أظهرت هو أسف النظري ل ما (1) مع 1 0.7. ومن الناحية العملية، لن توفر العينة عادة مثل هذا النمط الواضح. باستخدام R، قمنا بمحاكاة n 100 قيم عينة باستخدام النموذج x t 10 w t .7 w t-1 حيث w t إيد N (0،1). لهذه المحاكاة، وتتبع مؤامرة سلسلة زمنية من بيانات العينة. لا يمكننا أن نقول الكثير من هذه المؤامرة. وتأتي العينة أسف للبيانات المحاكاة. ونحن نرى ارتفاع في التأخر 1 تليها عموما القيم غير الهامة للتخلف الماضي 1. لاحظ أن العينة أسف لا يطابق النمط النظري لل ما الأساسية (1)، وهو أن جميع أوتوكوريلاتيونس للتخلف الماضي 1 سيكون 0.ويمكن أن يكون لعينة مختلفة عينة أسف مختلفة قليلا مبينة أدناه، ولكن من المرجح أن يكون لها نفس السمات العامة. الخصائص النظرية لسلسلة زمنية مع نموذج ما (2) بالنسبة للنموذج ما (2)، تكون الخصائص النظرية كما يلي: لاحظ أن القيم غير الصفرية الوحيدة في أسف النظرية هي للتخلف 1 و 2. أوتوكوريلاتيونس للتخلف العالي هي 0 لذلك، فإن عينة أسف مع أوتوكوريلاتيونس كبيرة في التأخر 1 و 2، ولكن أوتوكوريلاتيونس غير هامة لفترات أعلى يشير إلى احتمال ما (2) نموذج. إيد N (0،1). المعاملات هي 1 0.5 و 2 0.3. لأن هذا هو ما (2)، فإن أسف النظرية لها قيم غير صفرية فقط في التأخر 1 و 2. قيم أوتوكوريلاتيونس غير نازيرو هي مؤامرة من أسف النظري يتبع. وكما هو الحال دائما تقريبا، فإن بيانات العينة لن تتصرف تماما تماما كما النظرية. قمنا بمحاكاة n 150 قيم عينة للنموذج x t 10 w t .5 w t-1 .3 w t-2. حيث w t إيد N (0،1). وتأتي سلسلة المسلسلات الزمنية للبيانات. كما هو الحال مع مؤامرة سلسلة زمنية ل ما (1) عينة البيانات، لا يمكن أن أقول الكثير من ذلك. وتأتي العينة أسف للبيانات المحاكاة. النمط هو نموذجي في الحالات التي قد يكون نموذج ما (2) مفيدة. هناك اثنين من ارتفاع كبير إحصائيا في التأخر 1 و 2 تليها القيم غير الهامة للتخلف الأخرى. لاحظ أنه نظرا لخطأ أخذ العينات، فإن عينة أسف لا تتطابق مع النمط النظري بالضبط. أسف للجنرال ما (q) النماذج A خاصية نماذج ما (q) بشكل عام هو أن هناك أوتوكوريلاتيونس غير الصفرية للفواصل q الأولى و أوتوكوريلاتيونس 0 لجميع التأخر غ س. عدم تفرد الاتصال بين قيم 1 و (rho1) في ما (1) نموذج. في نموذج ما (1)، لأي قيمة 1. فإن المعاملة 1 المتبادلة تعطي نفس القيمة كمثال، تستخدم 0.5 ل 1. ثم استخدم 1 (0.5) 2 ل 1. تحصل على (rho1) 0.4 في كلتا الحالتين. لتلبية التقييد النظري يسمى العكوسة. فإننا نقيد نماذج ما (1) التي لها قيم ذات قيمة مطلقة أقل من 1. وفي المثال الذي أعطيت للتو، ستكون قيمة 0،5 قيمة معلمة مسموح بها، بينما لن تكون 1 10،5 2. قابلية نماذج ما يقال إن نموذج ما قابل للانعكاس إذا كان معادلا جبريا لنموذج أر غير محدود. من خلال التقارب، ونحن نعني أن معاملات أر تنخفض إلى 0 ونحن نعود إلى الوراء في الوقت المناسب. القابلية للانعكاس هي قيود مبرمجة في برامج السلاسل الزمنية المستخدمة لتقدير معاملات النماذج بشروط ما. انها ليست شيئا أننا تحقق في في تحليل البيانات. يتم إعطاء معلومات إضافية حول تقييد إنفرتيبيليتي ل ما (1) نماذج في الملحق. نظرية النظرية المتقدمة. وبالنسبة لنموذج ما (q) مع أسف محدد، لا يوجد سوى نموذج واحد قابل للانعكاس. والشرط الضروري للعكس هو أن للمعاملات قيم مثل المعادلة 1- 1 y-. - q y q 0 لديها حلول ل y التي تقع خارج دائرة الوحدة. رمز R للأمثلة في المثال 1، قمنا بتخطيط أسف النظري للنموذج x t 10 w t. 7w t-1. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. وكانت الأوامر R المستخدمة في رسم أسف النظرية: acfma1ARMAacf (ماك (0.7)، lag. max10) 10 تأخر من أسف ل ما (1) مع thta1 0.7 متخلفة 0: 10 يخلق متغير اسمه التأخر التي تتراوح من 0 إلى 10. مؤامرة (1)، و xlemc1 (1، 10)، ييلبر، تيله، أسف الرئيسي ل ما (1) مع theta1 0.7) أبلين (h0) يضيف محور أفقي إلى المؤامرة يحدد الأمر الأول أسف ويخزن في كائن اسمه acfma1 (اختيارنا من الاسم). تتخطى مؤامرات الأمر المؤامرة (الأمر الثالث) مقابل قيم أكف للتخلف من 1 إلى 10. تسمي معلمة يلب المحور الصادي وتضع المعلمة الرئيسية عنوانا على المؤامرة. لمعرفة القيم العددية لل أسف ببساطة استخدام acfma1 الأمر. وقد أجريت المحاكاة والمؤامرات مع الأوامر التالية. xcarima. sim (n150، قائمة (ماك (0.7))) يحاكي n 150 القيم من ما (1) xxc10 يضيف 10 لجعل المتوسط 10. الافتراضية الافتراضية المحاكاة يعني 0. مؤامرة (x، تايب، مينسيمولاتد ما (1) البيانات) أسف (x، زليمك (1،10)، ميناكف لبيانات العينة المحاكاة) في المثال 2، قمنا بتخطيط أسف النظري للنموذج شت 10 w .5 w t-1 .3 w t-2. ومن ثم محاكاة n 150 قيم من هذا النموذج ورسم التسلسل الزمني للعينة و أسف العينة للبيانات المحاكية. كانت الأوامر R المستخدمة acfma2ARMAacf (ماك (0.5،0.3)، lag. max10) acfma2 متخلفة 0: 10 مؤامرة (تأخر، acfma2، زليمك (1،10)، يلابر، تيبه، أسف الرئيسي ل ما (2) مع ثيتا 0.5، (h0) xcarima. sim (n150، قائمة (ماك (0.5، 0.3))) xxc10 مؤامرة (x، تيب، الرئيسية مقلد ما (2) سلسلة أسف (x، زليمك (1،10) ميناكف لمحاكاة ما (2) البيانات) الملحق: دليل على خصائص ما (1) للطلاب المهتمين، وهنا هي البراهين للخصائص النظرية للنموذج ما (1). الفرق: النص (شت) النص (wt theta1 w) 0 النص (وت) النص (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) عندما h 1، التعبير السابق 1 ث 2. لأي h 2، التعبير السابق 0 والسبب هو أنه، بحكم تعريف استقلالها. E (w w w j) 0 لأي k j. علاوة على ذلك، لأن w w t يعني 0، E (w j w j) E (w j 2) w 2. لسلسلة زمنية، تطبيق هذه النتيجة للحصول على أسف المذكورة أعلاه. نموذج ما لا يمكن عكسه هو واحد التي يمكن أن تكون مكتوبة كنموذج لانهائية أجل أر التي تتقارب بحيث معاملات أر تتلاقى إلى 0 ونحن نتحرك بلا حدود مرة أخرى في الوقت المناسب. تثبت جيدا إنفرتيبيليتي ل ما (1) نموذج. ثم نستبدل العلاقة (2) ل w t-1 في المعادلة (1) (3) (زت وت theta1 (z - theta1w) wttata1z - theta2w) في الوقت t-2. المعادلة (2) يصبح نحن ثم بديلا العلاقة (4) ل w t-2 في المعادلة (3) (زت وت ثيتا z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) إذا كان علينا أن نواصل ( (زت وت theta1 z - theta21z thta31z - theta41z النقاط) لاحظ مع ذلك أنه إذا كان 1 1، فإن المعاملات ضرب ضرب من z زيادة (بلا حدود) في الحجم ونحن نعود إلى الوراء في زمن. ولمنع ذلك، نحتاج إلى 1 لتر 1. هذا هو شرط لنموذج ما (1) قابل للانعكاس. لانهائية النظام ما نموذج في الأسبوع 3، نرى أيضا أن أر (1) نموذج يمكن تحويلها إلى أمر لانهائي ما نموذج: (شت - mu وت phi1w نقاط phi21w phik1 ث النقاط مجموع phij1w) هذا الجمع من الماضي شروط الضوضاء البيضاء هو معروف كما التمثيل السببي لل أر (1). وبعبارة أخرى، x t هو نوع خاص من ما مع عدد لا حصر له من المصطلحات تعود في الوقت المناسب. وهذا ما يسمى أمر لا حصر له ما أو ما (). أمر محدود ما هو أمر لانهائي أر وأي أمر محدود أر هو أمر لانهائي ما. أذكر في الأسبوع 1، لاحظنا أن شرط ل أر ثابتة (1) هو أن 1 lt1. يتيح حساب فار (x t) باستخدام التمثيل السببي. هذه الخطوة الأخيرة تستخدم حقيقة أساسية حول السلسلة الهندسية التي تتطلب (phi1lt1) وإلا فإن السلسلة تتباعد. التنقل
No comments:
Post a Comment